Thermoplastic Silicone-Polyurethane Copolymers for Medical Devices and Prosthetic Implants

Robert S. Ward
President / CEO
The Polymer Technology Group, Inc.
2310 7th Street • Berkeley, CA 94710
(510) 641-0300
www.polymertech.com

Outline
I. Vertical Integration of Biomaterials & Device Development
II. Introduction to Polyurethanes and Silicone-urethanes
III. History of Silicone-Urethanes as Biomaterials
IV. Silicone-Urethane Synergy in Biomedical Applications
 • Thromboresistance
 • Biostability
V. Production of Silicone-Urethane Copolymers
VI. Device Fabrication Methods

Polymer Development Process

Potential Advantages of Silicone-urethane Copolymers

Chemistry of Conventional Polyurethanes and Silicone-Polyurethane Copolymers

R.S. Ward © 2001, The Polymer Technology Group, Berkeley, CA
Urethane and Urea Formation

\[R - NCO + HO - R' \xrightarrow{} R - N - C - O - R' \text{ urethane} \]

\[R - NCO + NH_2 - R' \xrightarrow{} R - N - C - N - R' \text{ urea} \]

\(R' = \) polyester, polycarbonate and/or polydimethylsiloxane (PSX)

Chain Extenders & Soft Segment Used in Many Biomedical Polyether Urethanes:

Polyether, Biomax, BioSpan®, SPU, Tecoflex, etc.

Urethane: Butane Diol \(HO\cdot CH_2\cdot CH_2\cdot CH_2\cdot OH \)

Urea: Ethylene Diamine \(H_2N\cdot CH_2\cdot CH_2\cdot NH_2 \)

\(H_2[O(CH_2\cdot CH_2\cdot CH_2)],OH \) \(MW = 200 \text{ to } 2000 \)

Polytetramethylene oxide (PTMO)

a.k.a. polytetramethylene ether glycol (PTMG)

Diisocyanates Commonly Used in Biomedical Polyurethanes

- Methylene bis(p-phenyl isocyanate)
- Diphenylmethane diisocyanate
- Methylene bis(cyclohexyl isocyanate)
- Hydrogenated MDI \(H_2MDI \)

Hydrogen Bonding Among Adjacent Hard Segments in TPU:

Thermally-Reversible “Crosslinks”

- Blackwell & Gardner, Polymer, 2012, 1979

Polydimethylsiloxane End Group:

\(MW = 2000 \text{ daltons} \)

\(6\AA \)

\(\approx 75 \text{ Å} \)

Area Per Molecule \(\approx 675 \quad \text{Å}^2 \)

Area Per Mole \(\approx 4 \times 10^{10} \text{ cm}^2 \)

Segmented Polyurethane with Silicone Surface Modifying End Groups (SME)

- R.S. Ward © 2001, The Polymer Technology Group, Berkeley, CA
Hydroxyalkyl-Terminated PSX Fluid:
Reacts with -NCO to form silicone-urethane with hydrolytically-stable Si-C bonds

Continuous Synthesis of Reactive Silicone Oligomers

Incomplete History of Silicone-Urethane Biomaterials

Some Clinical Devices and Prostheses Made from Silicone-Urethanes
- Intraaortic Balloons
- VADs
- Vascular Grafts
- Vasc. Access
- A-C Bypass
- Pacemaker Leads
- Orthopedic Implants
- Urological Implants

Examples of Silicone-Urethanes in Biomedical Applications: 1970 to present

CarboSil® TPU: Thermoplastic Silicone-polyether-urethane w. SME
PurSil® TPU: Thermoplastic Silicone-polyether-urethane w. SME
BioFlex® S SPU: Solvent-Cast w. PSX Surface Modifying End Groups™ (SME)
RiboForm® Cast on Silicone: Solvent-cast SPU w. PSX from substrate
Thoraco®: Solvent-Cast SPU w. PSX®PU Surface Modifying Additive (SMA)
Biemer & Re-dissolved Lucor® Spandex: Solvent-cast SPU w. PSX "contaminant"
Avcothane-811 / Cardiothane™-81: Solvent-Cast PSX-urethane hybrid (ca. 1970)

R.S. Ward © 2001, The Polymer Technology Group, Berkeley, CA
Avcothane-51 / Cardiothane 51:
The First Silicone-Urethane Biomaterial ca. 1970
"...stability of polyether urethane is enhanced by the silicone."
- A blend of silicone and polyurethane
- Silicone molecular weight determines morphology
- Opaque to visible light
- Fabricated from a moisture-sensitive solution

Ventricular Assist Devices:
- BioSpan or Biomer Cast on Silica-free Silicone
- Thoralon™ (Polyurethane with Silicone SMA)

Thoratec Vascular Grafts:
- Thoralon™ (SPU w. Silicone SMA)
Clinical Uses: Vascular Access & CABG

Manufacture of Thermoplastic Silicone-Polyurethanes:
Batch and Continuous Processes

Typical Batch Synthesis of Thermoplastic (Silicone)Polyurethanes
Continuous Polymerization Process for Thermoplastics Polyurethanes

PTG Continuous Synthesis of Thermoplastic Polyurethanes

PurSil™ Thermoplastic Silicone-Polyether Urethanes (TSPU)

- **PurSil™ TSPU**
 - "Aromatic TSPU"
 - Aromatic Hard Segment:
 - PTMO Soft Segment
 - Silicone Co-Soft Segment
 - Silicone End Groups*

- **PurSil™-AI TSPU**
 - "Aliphatic PurSil TSPU"
 - Aliphatic Hard Segment:
 - PTMO Soft Segment
 - Silicone Co-Soft Segment
 - Silicone End Groups*

* Can be varied

CarboSil™ Thermoplastic Silicone-Polycarbonate Urethanes

- **CarboSil™ TSPU**
 - "BioniSil-Silicone Copolymer"
 - Aromatic Hard Segment:
 - 'Carbonate' Soft Segment
 - Silicone Co-Soft Segment
 - Silicone End Groups*

- **CarboSil™-AI TSPU**
 - "Aliphatic CarboSil TSPU"
 - Aliphatic Hard Segment:
 - 'Carbonate' Soft Segment
 - Silicone Co-Soft Segment
 - Silicone End Groups*

* Can be varied

Thromboresistance of Silicone-Polyurethanes

R.S. Ward © 2001, The Polymer Technology Group, Berkeley, CA
Reduced In Vivo Platelet Adsorption via Silicone Modification of Polyurethane

IABs at Explant: 7 Days In Cows

Without Silicone SMA
With Silicone SMA

VAD Bladders: 30-day Calf Explant

SPU with Silicone SMA
SPU without Silicone SMA

Biostability of Silicone-Polyurethanes

Factors Affecting the In Vivo Degradation of Polyurethanes

- Hard Segment: Chemistry and Content
- Soft Segment Chemistry and SMEs
- Initial Molecular Weight and Purity
- Device Manufacturing Process: Residual Stresses and Thermal History
- Device Design and Function
- Sterilization Method
- Implant Site: Blood, Muscle, Soft Tissue, etc.
- Adjacent Materials: e.g., Cobalt Alloys

Cardiothane-51 IAB After 327 Day Implant *(1981)*

R.S. Ward © 2001, The Polymer Technology Group, Berkeley, CA
ATR Infrared Analysis of Cardiolthane-51 IAB* Explanted @ 327 days

Change in GPC Chromatogram Due to In Vitro Degradation

Intra-muscular Explants:
12 month unstressed (200X SEM)

Accelerated In Vivo Biostability Testing:
Segmented Silicone-Urethane Copolymer:
18 month Rabbit Implants @ 150% Strain (1000X)

Accelerated In Vitro Biostability Testing of a Thermoplastic Silicone-Urethane Copolymer:
12 Week Exposure in 'Solution A' (MIO Solution)

'Stores Test' Results:
ESC Resistance of PurSil™ 10-60A TSPU (500X SEM)

R.S. Ward © 2001, The Polymer Technology Group, Berkeley, CA
Optimization of Silicone Content of Copolymers for Specific Applications

Maximizing Biostability of Soft Polyurethanes
0. Increase Hard Segment Content to Phase Inversion Pt.
1. Add Backbone Silicone + SME
2. Add Silicone SME
3. Reduce Residual Stresses in Parts
4. Increase / Maintain Polymer MW Before Implant
5. Increase Alkyl Chain Length Between Ether Oxygens
6. Increase (Conventional) Stabilizer Content
* CAUTION: Ranking based on author's opinion and limited data

Structure and Properties of New Thermoplastic Silicone-Polyurethanes: CarboSil™ and PurSil™ TSPUs

GPC Molecular Weight of PurSil® 80A Thermoplastic Silicone-Polyurethane Copolymers After One Extrusion*

<table>
<thead>
<tr>
<th>Silicone Content [wt%]</th>
<th>Mw</th>
<th>Mn</th>
<th>Mw/Mn</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>108000</td>
<td>182100</td>
<td>1.7</td>
</tr>
<tr>
<td>20</td>
<td>115000</td>
<td>186000</td>
<td>1.6</td>
</tr>
<tr>
<td>37</td>
<td>92700</td>
<td>145300</td>
<td>1.6</td>
</tr>
</tbody>
</table>

* Polymethylsiloxane Mixed Soft Segment and PSX Surface Modifying End Groups

Tensile Strength of PurSil® 80A Aromatic Thermoplastic Silicone-Polyurethane Copolymers: Solvent-Cast Films

<table>
<thead>
<tr>
<th>Silicone Content [wt%]</th>
<th>Tensile Strength [psi]</th>
<th>Ultimate Elongation [%]</th>
<th>Initial Modulus [psi]</th>
<th>Optical Clarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>6200</td>
<td>720</td>
<td>3200</td>
<td>Water-clear</td>
</tr>
<tr>
<td>20</td>
<td>5900</td>
<td>690</td>
<td>2750</td>
<td>Water-clear</td>
</tr>
<tr>
<td>37</td>
<td>4810</td>
<td>600</td>
<td>4300</td>
<td>Water-clear</td>
</tr>
</tbody>
</table>

* Polymethylsiloxane Mixed Soft Segments + PSX Surface Modifying End Groups

R.S. Ward © 2001, The Polymer Technology Group, Berkeley, CA
Tensile Properties* and MW of 80A Thermoplastic Silicone-Polyurethanes: Aromatic Polymer

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aromatic</td>
<td>MDI-BO</td>
<td>PTMO</td>
<td>0</td>
<td>2150</td>
<td>615</td>
<td>2150</td>
<td>994600</td>
</tr>
<tr>
<td>PurSil™ 88 PPU</td>
<td>MDI-BO</td>
<td>PTMO</td>
<td>10</td>
<td>6515</td>
<td>265</td>
<td>6515</td>
<td>133130</td>
</tr>
<tr>
<td>PurSil™ 88 PPU</td>
<td>MDI-BO</td>
<td>PTMO</td>
<td>15</td>
<td>6170</td>
<td>585</td>
<td>5170</td>
<td>119578</td>
</tr>
<tr>
<td>PurSil™ 88 PPU</td>
<td>MDI-BO</td>
<td>PTMO</td>
<td>10</td>
<td>6170</td>
<td>585</td>
<td>5170</td>
<td>119578</td>
</tr>
<tr>
<td>PurSil™ 88 PPU</td>
<td>MDI-BO</td>
<td>PTMO</td>
<td>15</td>
<td>6170</td>
<td>585</td>
<td>5170</td>
<td>119578</td>
</tr>
</tbody>
</table>

* Lab-Synthesized

Stress-Strain Curves of PurSil™ Silicone-Polyether-urethane Copolymers: Compression-Molded Plaques

Tensile Strength vs. Silicone Content: CarboSil™ and PurSil™ Aromatic TSPUs

Possible Optimization of Silicone Content for Specific Applications

Processing and Fabrication Methods for (Silicone-Urethane) Thermoplastics

Processing of Thermoplastic Silicone-Polyetherurethanes:
All methods suitable for soluble thermoplastics
- Extrusion
- Injection Molding
- Heat Sealing
- RF Welding
- Solution Casting
- Dipping
- Solvent Bonding
- Other
Conclusion

- Strong, optically-clear, thermoplastic silicone-urethane copolymers have been developed.
- Hardness, silicone content and surface chemistry can be varied (over a wide range) to optimize polymers for specific applications.
- Ongoing accelerated biostability testing of soft polymers shows significant improvements over silicone-free polycarbonates and polyether urethanes; (Additional improvements are possible with SME™ technology)
- Thermoplastic processing and solvent solubility increase the range of device fabrication methods.